

ELIZADE UNIVERSITY ILARA-MOKIN ONDO STATE

HOD's SIGNATURE

FACULTY: Basic and Applied Sciences
DEPARTMENT: Physical and Chemical Sciences
FIRST SEMESTER EXAMINATIONS

2016/2017 ACADEMIC SESSION

COURSE CODE: AGP 307

COURSE TITLE: Self Potential, Induced Polarization and

Electrical Resistivity Methods

DURATION: 21/2 hours

TOTAL MARKS: 70 MARKS

Matriculation Number: _____

INSTRUCTIONS:

- 1. Write your matriculation number in the space provided above and also on the cover page of the exam booklet.
- 2. This question paper consists of 3 pages.
- 3. Answer all questions in the exam booklet provided.
- 4. Attempt Questions 1 and 5, and any other two questions

ELIZADE UNIVERSITY FACULTY OF BASIC AND APPLIED SCIENCES

DEPARTMENT: PHYSICAL AND CHEMICAL SCIENCES

PROGRAMME: APPLIED GEOPHYSICS EXAM TITLE: DEGREE EXAMINATION COURSE CODE & TITLE: AGP 307: Self Potential, Induced Polarization and Electrical Resistivity Methods

SEMESTER/SESSION: FIRST / 2016/2017 TIME ALLOWED: 21/2 hrs INSTRUCTIONS: Answer questions 1 and 5, and any other TWO Questions.

Write your matriculation number only on your answer script(s) and NOT your name

1. (a) Table 1 is a Vertical Electrical Sounding (VES) data acquired from a Basement terrain.

(i) Plot the data.

- (ii) Through partial curve-matching, evolve the geoelectric model parameters for the
 - (iii) State the curve type generated and show the layer resistivity combinations.
- (b) Draw a columnar section from the geoelectric model parameters derived from your interpretation.
- (c) List two applications of the Induced Polarization method.
- (d) Highlight four factors that control the resistivity of earth medium.

(22 marks)

- (a) Discuss the Sato and Mooney electrochemical half-cell theory. Support your 2. discussion with an appropriate diagram.
 - (b) List four factors that influence the magnitude of Membrane Polarization. With appropriate diagram(s), illustrate the variations of two of the mentioned factors.

(14 marks)

- 3 (a) In the electrical resistivity method, various electrode arrays are applied. Discuss any three of the arrays with clearly drawn field layout.
 - (b) Use the generalized apparent resistivity equation to deduce the apparent resistivity equations for any two arrays discussed above. (14 marks)
- 4. (a) Discuss four major application areas of the Electrical Resistivity Method.
 - (b) State three ways the frequency domain Induced Polarization (IP) effect can be measured Support your answer with relevant equations. (14 marks)
- 5. (a) Distinguish between Gradient array and Total field array adopted in Self Potential method Which of these would you adopt in a rugged terrain and why?
 - (b) Using the appropriate array equation, compute and complete the field data record on Tab 2. Give G to 2 decimal places, ρ_a to the nearest whole number. Take Π as 3.142. Sho your workings. Define terms in the equation you have used for your computation.

(20 marks)

 Fable 1: Vertical Electrical Sounding (VES) Data

Table 1: Vertical Electrical Sounding (VES) Data				
ELECTRODE	APPARENT RESISTIVITY			
SEPARATION	(Ohm-m)			
(m)				
(AB/2)	VES 1			
1	349			
. 2	290			
3	210			
4	177 .			
6.	166			
6	137			
8	157			
12	176			
15	196			
15	198			
25	276			
32	295			
40	314			
40	361			
65	491			
85	614			

Table 2: Field Data

Station	Electrode	Potential	Resistance,	Geometric	Apparent
Number	separation	Electrode	R (Ohm)	factor, G	Resistivity,
	(AB/2) m	(MN) m			ρ _a (Ohm-m)
1	1	0.5	54.46		
2	2	0.5	6.37		
3	3	0.5	1.79		
4	4	0.5	0.74		
5	6	0.5	0.23		
6	6	1.0	0.44		